next up previous contents
Next: The FHT Algorithm Up: The Fast Hough Transform Previous: The Fast Hough Transform   Contents

Notation

The following notation is taken from [#!Li_etc_86!#]. Hyperplanes are represented by the equations
\begin{displaymath}
a_{0j} + \sum_{i=1}^k a_{ij} X_i = 0\;\;\;{\rm for} j = 1,2,\ldots,n
\end{displaymath} (5.15)

where $(X_1,X_2,\ldots, X_k)$ is parameter space, rescaled so that the initial ranges of each $X_i$ are the same and centred around zero. The initial ranges thus form a hypercube (generalisation of a cube) in parameter space. Each $a_{ij}$ is a function of $F_j$ normalised such that $\sum_{i = 1}^k a_{ij}^2 = 1$.



2006-03-17